Research findings concerning benzene, toluene, ethylobenzene, meta-, para- and ortho-xylene as well as styrene (BTEXS) emission at public cemeteries during All Saints’ Day are presented here. Tests were carried out at town-located cemeteries in Opole and Grodków (southern Poland) and, as a benchmark, at the centres of those same towns. The purpose of the study was to estimate BTEXS emissions caused by the candle burning and, equally important to examine, whether emissions generated by the tested sources were similar to the BTEXS emissions generated by road transport. During the festive period, significant increases in benzene concentrations, by 200 persen and 144 %, were noted at the cemeteries in Opole and Grodków, as well as in toluene, by 366 persen and 342 %, respectively. Styrene concentrations also increased. It was demonstrated that the ratio of toluene to benzene concentrations from emissions caused by the burning candles are comparable to the ratio established for transportation emissions.

Light aromatic hydrocarbons (BTEXS) are classified as volatile organic compounds (VOC). Due to their toxic effect, the permissible ambient air concentration of some of these compounds is legally regulated (European Commission 2008). Benzene is the most toxic and has the greatest effect on human health. In accordance with the decision of the International Agency for Research on Cancer (IARC) – benzene is classified in Group 1 and is therefore considered to be a highly carcinogenic compound (IARC 2004). BTEXS have also been associated with various effects on health, including carcinogenic and/or mutagenic effects, which, apart from benzene, are also ascribed to ethylbenzene and styrene (Kyle et al. 2001; OEHHA 2009). Additionally, compounds in the BTEXS group may have an adverse effect on the nervous, respiratory and circulatory systems (Chen et al. 2008; OEHHA 2009). Monocyclic carbohydrates, apart from their toxic properties, are characterised by a large potential for creating tropospheric ozone (ground level ozone) and certain ones (toluene, ethylbenzene, xylenes) also participate in formation of the secondary organic aerosols that are harmful to human beings and ecosystems (Griffin et al. 1997; Rappengluck et al. 1998; Atkinson 2000; Khoder 2007).